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ABSTRACT

This paper is concerned with the creation and subsequent motion of singularities of

solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over

a vacuum). For a specific set of initial conditions, we give analytical evidence to suggest the

instantaneous formation of one or more singularity(ies) at specific point(s) in the unphysical

plane, whose locations depend sensitively to small changes in initial conditions in the physical

domain. One-half power singularities are created in accordance with an earlier conjecture;

however, depending on initial conditions, other forms of singularities are also possible.

For a specific initial condition, we follow a numerical procedure in the mlphysical plane

to compute the motion of a one-half singularity. This computation confirms our previous

conjecture that the approach of a one-half singularity towards the physical domain corre-

sponds to the development of a spike at the physical interface. Under some assumptions

that appear to be consistent with numerical calculations, we present analytical evidence to

suggest that a singularity of the one-half type cannot impinge the physical domain in finite

time.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NASI-18605 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Ilampton, VA 23665.





1. INTRODUCTION

The motion of the interface of a heavy fluid initially resting on top of a lighter fluid

(Rayleigh-Taylor flow) is a very basic but inlp6rtant problem in fluid dynamics and has
been the subject of intensive researchover a long period of time. Recent interest in

the Rayleigh-Taylor instability stems from its disruptive presencein inertial confinement

devices(SeeVerdon et al (1982) for instance). Emmons, Chang & Watson (1959) studied
the interfacial features experimentally with initially sinusoidal disturbances and found

that for large times, a pattern containing downward spikesand upward moving bubbles

forms. In other experiments(Read, 1984)with Atwood ratio close to one (i.e. density ratio

between lighter and heavier fluid close to zero), a variety of bubbles and spikes is formed for

random initial condition. It is clear that there is a significant interaction between bubbles

(or spikes) so that the congregate motion is rather different from a regular pattern.

In the idealized limit of two-dimensiona! inyiscid, incompressible fluid over a vacuum,

direct numerical calculations by Baker, Meiron & Orszag (1982) have shown that an initial

sinusoidal perturbation of the interface leads to an upward moving bubble and a downward

moving spike in each period of the disturbance. The shape of the upward moving bubble

agrees with the steady bubble solutions of Da,Aes & Taylor (1950), while a downward

moving spike accelerates with free fall. For initial conditions containing more than one non-

identical undulation per period, the demand for appropriate resolution makes it difficult

to continue calculations (along the lines of Baker, Meiron & Orszag (1982)) for sufficiently

long-times to identify the effective acceleration of the bubble-tip-envelope observed in the

Read experiment (1984).

Given the physical importance of its dynamics, the Rayleigh-Taylor problem has also

been studied from a more practical perspective since direct numerical calculations based

on the fluid-dynamical equations appear to be impractical even for the simplest of the

Rayleigh-Taylor flows. Model equations have been developed (see Gardner et al (1988)

and Sharp (1984) and references there in) to study the interaction of multiple bubbles and

spikes. Typically these include parameters that in some cases can be computed rationally

by appeal to physical dynamics. Some of the more recent models (Gardner et al (1988))

have been developed in great generality without any of the restrictive assumptions of an in-

viscid incompressible two dimensional flow. While these studies have been quite important

in furthering physical understanding of bubble competition and merger processes, we are

unaware of any direct derivation of model equations from the fundamental fluid equations.

While this paper does not address this problem either, we hope the approach in this paper

will eventually bridge the gap between the direct numerical simulation of fluid equations

and model studies, at least in simple cases.



Here,weexplore the dynamicsof singularities in the classicalRayleigh-Taylor problem

without resort to any localized approximation (Siegel (1989), Baker, Caflisch ,_ Siegel

(1992)). At time i, consider the confornlal map z(_, t) that maps the interior of a cut unit

circle in the _" plane (Fig. 1) into a periodic strip in the physical domain (Fig. 2) such

that the origin coincides with z = -i oo. The unit circular boundary then corresponds

to the free boundary. W_ will be concerned with the formation and subsequent motion of

singularities of z(_, t) and the complex velocity potentiM W(_, t) in the unphysical domain

I_] > 1. W'e have several long range goals in furthering such an understanding.

First is the possibility that singularities can be analytically subtracted out in a basis

representation of f and W making them amenable to direct numerical calculations for a

long time. Second is that the bubble and spike interaction can be understood through

the interaction of nmltiple singularities in the unphysical complex plane. As shown in this

paper, a one-half singularity in l_l > 1 approaching I_t = 1 corresponds to a continually

developing spike at the physical interface. The portion of the unit circle I_l = 1 between

any two approaching singularities contains the image of the bubble boundary in the

plane. Thus, pairwise singularity merging correspond s to a bubble getting smaller, while

its neighbor becomes larger-a well known process in the Rayleigh-Taylor problem. Third,

it may be possible to reach general qualitative and quantitative conclusions about the

relation of long time bubble dynamics to the specifics of initial conditions in the complex

unphysical plane, which is related to the physical initial condition in an ill-posed way. This

may allow one to construct an appropriate statistical model of bubble interaction in terms

of the statistical features of the initial conditions in the unphysical domain.

In a previous paper (Tanveer, 1991a), the analytically continued equations for the

two-dimensional Rayleigh-Taylor and water wave problems were derived in the unphysical

domain ]_t > 1. For steady water waves, analytical and numerical calculations were

carried out to establish the relation of water wave crests to one-half singularities of z(_, t).

However, for the Rayleigh-Taylor or the unsteady water wave problems, no concrete results

were obtained except to note that certain one-half singularities of z(_', t) and W(_, t) were

consistent with these equations. It was also noted that in the limit of a one-half singularity

approaching the physical domain, the analytically continued acceleration at a one-half

singularity is the free-fall under gravity, similar to that which is observed for a spike.

Based on this, it was conjectured that a one-half singularity approaching the physical

domain corresponds to a spike developing at the physical interface. The work presented

here is is a natural continuation of our previous (Tanveer, 1991a) work. This paper is

organized as follows.

In Section 2, we present the analytically continued equations in the unphysical plane



]_l > 1 that has been derived previously (Tanveer, 1991a). The equations are presented

in several alternate forms, some more convenient for asymptotic analysis, while others for

numerical computation.

In Section 3, we show that under some assumptions on the single-valuedness of _ as

a function of a characteristic variable in some region of the characteristic space, the only

! and
possible singularity _,(t) of z(_,t) and W(_,t) in _"is of a "fold" type where each of z_

are analytic functions of the variable (_"- _(t)) '/2 or (_- _(t)) l/a or (_"- _(t)) 1/4
z(

etc. In the case when the fold singularity is of the one-half type, we relate the coefficients

in an expansion in [_ - _(t)] _/2 to the solution in the characteristic plane.

Iu Section 4, we address the question of singularity formation-how does a singularity of

z(_, t) and W(_', t) form in the unphysical domain when there is none initially? We. consider

several classes of initial conditions for which z(£, 0) and W(£, 0) are analytic everywhere

in the finite _ plane outside the unit circle. We give analytical evidence to suggest that

singularities can form instantaneously at a point in the £ plane where z<(_, 0) = 0. This

result is very similar to results obtained in similar situations for other fluid flows such as the

Hele-Shaw flow with surface tension (Tanveer (1991b)) or the Kelvin-Helmholtz problem.

In the latter case, recent work of Cowley et al (1992) has shown that the Moore singularity

(Moore (1979,1985), supported by numerical computations of Krasny (1986), Shelly (1992)

and rigorously analyzed by Caflisch & Orlenna (1988), actually forms instantaneously at

some point in the complex circulation variable. We also find that in our problem, for

some initial conditions, a singularity moves in instantaneously from infinity to the finite

plane in the sense that for any fixed t > 0, the singularity is at a finite _ point; yet as

t _ 0 +, this location recedes to infinity. Our calculations suggests that for certain set

of initial conditions, only one-half singularities can be created; however, there exists other

initial conditions for which singularities of a more complicated form involving logarithm

can occur. In this case, the assumption on single valuedness of ((_, t) that is assmned in

the analysis of Section 3 is violated.

In Section 5, we employ a numerical procedure to track the motion of a one-half

singularity that is created at the initial instant of time. We compute not only the location,

but also a few coefficients of the one-half power expansion. So far, numerical computation

has been performed for a very special initial condition. Nonetheless, the result confirms our

previous conjecture that the approach of a one-half singularity corresponds to a continually

developing spike at the physical interface.

In Section 6, we address the question if an approaching one-half singularity of z(_, t)

and W(_, t) of the type computed in Section 5 can actually impinge the physical domain

boundary 1_1 = 1 in finite time. With certain assumptions that appear to be consistent



with the numerical calculations in Section 5, our analytical evidence suggests that an

isolated one-half singularity cannot impinge the real domain in fnite time. However, this

leaves open the possibility of different kinds of singularity or multiple one-half singularities

coalescing at I_] = 1. This result has a bearing on the work of other researchers. Siegel

(1989) and Baker, Caflisch &: Siegel (1992) have studied exact complex travelling wave

solutions to a localized simplification of the Rayleigh-Taylor equations for arbitrary Atwood

ratio. For unit Atwood ratio (the case studied here), Baker, Caflisch & Orlenna (1992)

found a class of travelling wave solutions with one-half singularities, each of which moves

at a constant speed. However, based on a spectrum fit of the numerically computed results

for the fldl Rayleigh-Taylor problem in the physical domain, they detect a definite slow

down of such singularities at unit Atwood ratio which is at variance with the solution to

the localized approximation. However, it remains unclear from their work if the slowdown

was sufficiently significant to avoid a finite time singularity in the real domain.

Since the analytic continuation of z(_, 0) from I_]-< 1 to the unphysicalplane ]_1 > 1

is an ill-posed procedure, i.e. arbitrary small deviations of z(_, 0) in I_l -< I can affect the

location of its zeros of z<(_, 0) in I_l > 1, it follows that the precise location and number

of such singularities created at initial time will be highly sensitive to initial conditions in

the physical domain. Our results on the correspondence of singularities with spikes at later

times can explain the observed random nature of bubble-spike interaction in the long-term

behavior of the physical interface. In our discussion in Section 7, we make a plausibility

argument on how singularity interactions can explain bubble competition.

2. MATHEMATICAL EQUATIONS

The conformal map from the cut unit _ circle (Fig. 1) into a periodic strip in the

physical domain as shown in Fig. 2 ( z = x + iy ) can be decomposed into

z((,t) = 2_ + i In_ + i f(_,t) (2.1)

where f(_,t) is oblivious to the branch cut and therefore possesses a convergent power

series representation for I_l < 1

OO

= C. (2.2)
n=0

Here we have assumed, without any loss of generality, that the period in the z plane is 2_

and the acceleration due to gravity is unity and is directed upwards (along the positive y

axis). For analytic shape, the convergence of (2) occurs up to I¢I = 1. Similarly, there

exists a power series represcntation for the complex velocity potential
OO

W(¢,t) = _ b,_(t) ¢'_. (2.3)
rt=O

4



We will assumethat the initial conditions are symmetric, so that an and b, are initially

real. From the equations, it is clear that these symmetries are preserved for all later

times. This assumption is only made for simplicity and generalizations for nonsynmletric

disturbances are possible. This means that on the real ( -axis in the interval (-1,1),

±.,, f = 0 (2.4)

holds for f and the complex velocity potential W satisfies

Im W = 0. (2.5)

The kinematic condition on tile free boundary can be expressed as

D

D_ In p(x,y,t) = 0 (2.6)

on p(x,y,t) = 1, where ( = p e i_' , with _ real. In this representation, In p, l_ and

t can be thought of as three dependent variables depending on x , g and t . Switching

the role of dependent and independent variables, the kinematic condition implies that

Re [(l&_ - (* z_ zt] = 0 (2.7)

where the symbol • here and in what follows stands for complex conjugation. Plugging in

the representation for z from (2.1) on I(I = 1 , we find that (2.7) is equivalent to

ft Re C,W¢ (2.8)
Re [ 1 + (f(] = l1 + (f¢l 2

on ( = e i_' for u in the interval [0, 2 rr]. The analytic continuation of this for I([ > 1

(see Tanveer, 1991a for details) is

1 I¥((1/(, 1[)ft (W +g
1+(f¢ (1 + (" f¢) (1 + ¼f((1/(,t))

= /2 (2.9)

where [2 can be written as either of the following two expressions

h((',t) =- ft(1/(,t) (2.10)
1 1

1 + [f(([,t)

_ 16( d(' [(+ (']

4¢ri JK'I =, (' L('-iJ

1 1
+

1 1
[1 + (' f/((',t)] [1 + y f((v,t)]

(2.11)

5



Tile Bernoulli's condition o11the free surfacefor this time dependentproblem canbe

written as

(,Wif t f] 1 ]W;I2
Re [ 145 1 + ¢f4 = - 2 11+ Cf¢I2 (2.12)

on the unit circle { = e i"

Tanveer, 1991a for details) is

The analytic continuation of this outside tile unit circle (see

w,
1+(f4

f + We W¢(1/_,t) = -/, (2.13)
(1 + (A) (1 + _ + f¢(1/_,t))

where I1 can be written in either of the following two representations

1 1 1

I,(¢,t) Wt(1/¢,t)- gW¢(-_,t)ft(-_,t) 1= 57--7T .... f( t) (2.14)
(1 + _fi(_,t)) _'

_ 1 J_l¢ d(' [_"1-('] W¢(¢t'_)W_(-_'_)I 1 (2.15)Ii((,t) 4rri ,1= _ (' [('-¢J [l+('f_((',t)][l+_r f_(y,t)]

Equations (2.7) and (2.13) can be written in a more convenient form by defining

Yl -- CW_ (2.16)
1+¢f¢

In that case,

1
Y2 -- (2.17)

l+¢f¢

we get (Tanveer (1991@)

Yl, -(n3 -_- S2Yl)Yl/ : CYlY2/{I/ - (1+(I,,)y2 + 1 (2.18)

Y2, -- (Ra -+-R2yl )Y2_

where

R3 __ R2= -R2g2yl, + --_--Y2 - Y2-¢R4, Y_-C(--(-)¢Yly2- Ra, y2 + Ra, y_

(2.19)

1 1 t) 1w_(_, t) (2.20)
-- -- 1 1 _'R1 - 1 + _ f;(g,t) = -yl(

R2 = 1 + {_¢({,t) = C y2(_,t)
(2.21)

R3 = Ch (2.22)

1 1 t)
We( z, 1 t). (2.23)

1 1 t ) _--- Z2 _- Yl(_,124 = I2_ + 1 + _ f¢(_,



Notice that/l(_,t) and 12(_,_) given by (2.15) and (2.10) can also be written as

1 _¢ dC' [_+¢'] lyl(¢,,t)l_ (2.24)I,((,t)- 47ri ,1=1 ¢' LC'-CJ

h(¢,_) - 2_il _,,=, <'¢, [¢'[<+<']_<j n_ [£((,Oy2(¢',t)] (2.25)

sin ce fl'om symmetry properties (2.4) and (2.5) and the relations (2.16 ) an d (2.17), y _"( _', t ) =

y,(1/¢',t) and y_(<',t) : y2(1/¢',t) on l<'l = 1. By using (2.18) and (2.19), equation (2.19)

can be replaced by a relatively more compact equation

By introducing an appropriate characteristic variable { such that _ = _(_,t) and

_(_, O)= _ and defining

_1({,_) = yl (_({,t),_) (2.27)

O2(_,t)= y,_(¢(_,t),t) (2.28)
¢e(_,t) '

one finds that equations (2.18) and (2.19) is equivalent to the following set of equations

for _({,t), Ol({,t) and 02({,t) (Tanveer (1991a))

(t = --R3 -- R2yl (2.29)

t)_, = ¢0,.0z Q nk - (1+¢I,¢)!)2 Q + 1 (2.30)

R2

_12t R3^ "R3 (1_ Q - (/R4 Q 02 + R3¢ Q !)_ + --(fl,_12 (2.31)- (y2 ¢ _

Alternatively, from (2.29)-(2.31), we can derive

t

(2.32)

[ ] __ 1 (2.33)g' = --[1 + # Ii<(_(_,t),t)] -- + _12

Equations (2.29), (2.32) and (2.33) will form the basis of the numerical calculation de-

scribed in Section 4.



3. PROPERTIES OF A CLASS OF SOLUTIONS

Consider initial conditions for which eachof z<((, 0) and l'I)((, 0) are analytic every-

where in I(I > 1 except possibly at oo. Also, assume that there is some open region 7_

in the (planein l(] > 1 so that the image of R under (((,t) up to certain time T is

contained in ]C] > 1 with no point mapping to ( = (x_. Further, we require that ((_,t)

is single valued in 7_. These set of assumptions will be referred to later as Assumption A.

Our results in tile next section suggests that Assumption A can only be valid for arbitrary

7¢ in 1(1 > 1 for some class of initial conditions.

Consider an arbitrary closed contour C within _ where the Assumption A above is

valid up to some time T > 0. We now derive some analyticity properties of the solution

in this region up to time T.

It follows from (2.32) that

1]_/ d_ _ = O. (3.1)

Integration of (2.33) implies that

Yi d_ _ = d_ _ -_ (3.2)

hfitially, _(_,0) = _ and Yl and Y2 coincide with Y, and W. Thus since z_(¢,0) and

I4_((,0) are each analytic (assumption A), from (2.16) and (2.17), it follows that each of

a and v,(¢,0) is an analytic fiulction of ¢ for ]¢] > 1 (except possibly at o_). Thus,¢w(¢,0) _y2(_,0)

_(_,0)_)2(_,0)1 and ¢(_,0)02((,0)_'(_'°)are analytic functions of _ for ]_t > 1 (except possibly at oo).

Thus, from Cauchy's theorem

[f 1d_ _((,0)_)2((,0) = 0 (3.3)

[_d_ _,(_,0) ]¢(¢,0i _-¢,0) = o. (3.4)

From (3.1) and (3.2), it follows that

d_ _(_,t)_)2(_,t) = 0 (3.5)

d_ _(_,t)_)z(_,t) = 0. (3.6)

1 and 9,(_,t) will be analytic in _ in 7_. Then,Then from Moerara's theorem, /(_,t)_(_,t) ¢(_,t)O2(_,t)

#_ (_', t) and Y2 can only havepole singularities of the same order. However, from (2.20), a

8



pole in !)1 is compatible only with a logarithmic or worse singularity of _((,t) , which

thereforeviolates Assumption A. Thus, under Assumption A, we find that eachof _)1and

!)2 will be an analytic flmction of _ in the region R..

However, despite the analyticity of !)1 and !)2 as a function of ( under Assumption A,

each of Yl and Y2 (and therefore f and W) can have singularities in the image of _ in

the _ plane, as we shall now see. A singularity appears whenever there is failure of local

inversion of the relation _"= _({, t) into { = {(_', t). Such a singularity will be referred to

as a fold singularity as will occur a point {0(t) where

Q(_0(t),t) =0. (3.7)

For a fold of the simplest kind,

_(_0(t),t) ¢ 0. (3.s)

It is clear that if we define _',(t) = _'({0(t), t), then near { = {o(t),

1

= _,(t) + _Q_({0(t),t)[e - _o(t)] 2 + ... (3.9)

ce= cee(e0(t),t)[e- ¢0(t)] + ... (3.10)

!)_(_,t) = J,,(t) + J,_(t)({-{0(t)) + eia(t)(g-{0(t)) = + O(4-{o(t)) _ (3.11)

_)2(_,t)= B2(t) + f?a(4-{o(t)) + O(_-_o(t)) 2. (3.12)

Then, it is clear from (2.27), (2.28), (3.9)-(3.12) that

yl((,t) = A,(t) + A2(t) ((-(,(t)) '/2 + A3(¢-(s) q- o((_--¢s)a/2.. (3.13)

and

y2((,t) = B2(t) (_-_,(t)) '/_ + Ba(t)((-(,) + o((_-(,)a/_).. (3.14)

where

A,(t)=A,(t) (3.15)

A2(t) = _/ 2 (3.16)_'_(_o(t), t) ,i_(t)

B2(t) = ¢2_(_o(t),t)B2(t).

Similar expressions can be found for the other coefficients.

process carefully, it is clear that the analyticity of _l and _ at _ = _0(t) implies that each

(3.17)

Going through the inversion



of yl((,t) and y2((,t)is analytic in [( - _(t)] 1/2 at _ = _(t). From the definition of yl

and Y2 in (2.16) and (2.17) and that of f in (2.1), it follows that under Assumption A and

condition (3.S), each of z(_,t) and W(_,t) will be analytic in [( - _(t)] '/2 at _ = _(t).

The speed of such a singularity 4s can be found by noticing that due to (3.7),

_((_o(t),t) = £,(_o(t),t) since Q(_0(t), t) = 0 for a fold singularity. Therefore from (2.29),

_s _" --R3((s(t),t) -- R2((s(t), t) _/l((s(t),t) • (3.1s)

Alternatively, on substituting (3.13) and (3.14) directly into (2.18) and (2.19), we find

that the coefficients of the most singular terms as _ _ _,(t) is given by

and

d .g

A2-_ + A_ Rao + R2oA2 A, = 0 (3.19)

d

B2_7(, + (R3o + R2oA,)B2 = 0 (3.20)

where subscript 0 refers to the evahtation of those quantities at ( = (s(t) • Note that

each of equations (3.19) and (3.20) are consistent with (3.18). Equating progressively less

singular terms in _ - £,,(t) obtained by substituting (3.13) and (3.14) into (2.18), we get a

set of relations, the first two of which is

1

21 = 1 + _ d_ R_<(_(t),t) (3.21)

1

ft2 = -_ [R3_(_(t),t) + R2¢(_(t),t) A1 + R.z(_(t),t)A3]A2

+ R2(_(t),t)A2A3 + _AiB2Rl<(_(t),t) - (1 + _II<(_(t),t)) B2. (3.22)

Similarly on substituting (3.13) and (3.14) into (2.26) and equating different powers of

(_. _ _)_/2 , we find that the leading order equation is just (3.20). At the next order, we

find

-_ _ = _ _ (t:13C,((s(t),t) d- R2<(_(t),t) A, + R2 (_(t),t) A3 )

B3 1 (3.23)- R2(_(t),t)A2_57-- •
B2¢_ J

It is clear from this expansion that once A1, A2, _(t) B2(t) and B3(t) are known as

a function of time, one can calculate the coefficients of the higher order terms (say Aa

and B3 ) in terms of the already known lower order terms, provided global terms such as

R3(_(t),t) and I_c,(_(t),t ) are known. This is an important observation as it gives us, at

10



least in principle, a method of calculating as many coefficientsin the one-half expansion

in (3.13) and (3.14) aswe want, provided the first few terms are known. In Section 5, we

mlmerically calculate the first few coefficientsand also showhow the global terms can be

calculated.

Using a similar procedure as above, it is clear that if _0(t) is a double zero of Q

and Assumption A holds, the expansion for y_(¢,t) and y2(¢,t) will contain powers of

(_-_8(t)) 1/a. Generally for a zero of Q of n-th degree, one can expect a series in

[_ - ¢8(t)] 1/('_+1) for each of yl and y2.

4. SINGULARITY FORMATION IN THE RAYLEIGH-TAYLOR PROB-

LEM

In this section, for certain initially analytic z(_, 0) (hence f(_, 0)) and W(£, 0), we give

analytical evidence to suggest the instantaneous formation of one or more singularities in

f(_,t) and W(_,t) in the unphysical domain [_l > 1 at certain points that depend on

properties of z((,0) and W(_,O) in I([ > 1.

First, note that, for 0 < t << 1, we can try a regular perturbation expansion in t.

It is clear from (2.18) and (2.26) that

yl(¢,t) ---- _/1 (¢, O) -[- t [{R3(¢, O) -[- R2(¢,O)yl(¢, 0)} yl, (¢, O) _- (_]1 (¢, 0)y2(¢, O)nl (¢, O) -t- 1

1 1

-

(4.1)

Clearly, since each of R_((,t), R2(¢,t), Ra((, t) and/1 (¢, t) involve yl and g2 in the physical

domain _ < 1 (where each of them can easily be seen to have a regular perturbation

series in t), one will have a regular perturbation expansion in powers of t of these global

quantities as well. On substituting into (2.18) and (2.26), the coefficients of all powers of

t can be determined, at least in principle.

This regular perturbation series for t << 1 becomes disordered when the later terms

of the perturbation expansion is more singular than the previous terms, which can occur

at some finite ¢0 or as ( _ ec. Here, we will only restrict to breakdown in the power

series due to one or

(a) z<=Oat ¢=(0

(b) = 0 at ¢ = ¢o
(c) As ¢ _ oc, z<((,

more of the following conditions:

with z<<(_0,0) ¢ 0, W¢(_0,0) 7_ 0

with z<¢(¢0,0) 5¢ 0, IY(_,0) = 0 for all £.

0) -._/_2_ "*-1 for positive m and W;(_,0) --, D1 _(n+,,-1) for n > 1.
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4a. Birth of a pair of one-half singularities

Here we assumethat condition (a) holds at somepoint (0. In this case, from the

definition of f in (2.1) and yl and y2 in (2.16) and (2.17), it follows that the asymptotics

of yl((,0) and y2((,0) as ( _ (0 is given by

1

y,((,O)--_ (oZ;¢((o,O)((-(o) (4.3)

u_(¢,o) ~ w<(¢o,o)
(oZ¢¢((o, 0)(( - (o)" (4.4)

It is clear that the regular perturbation expansion in (4.1) and (4.2) get disordered as

_ (0 for any t > 0. Indeed the coefficient of t in (4.1) and (4.2) become the same

order as the leading order terms when ( -(0 = O(P/2). This suggests the choice of

(1 - (/(o)
71= t_/2 (4.5)

as the inner variable. In the limit t --* 0 + with _] = O(1), one then finds from (2.18)

and (2.26) that the solution is given in the similarity form

Yl = a -1 t -1/2 YI(r]) (4.6)

where

y2 = t -'/2 Yl(r/) (4.7)

R_(¢o,O)
a -- (o (4.8)

with a assumed nonzero. With O(P/2) error, each of Y1 and Y2 satisfy

Y, + ,JE' - 25 Yl' = o (4.9)

r_ + ,yJ + 2Y_5' - 2r, Y_'= o. (4.10)

The asymptotic matching condition that (4.6) and (4.7) match to the initial condition that

behave like (4.3) and (4.4) near the singular point implies that we must require that for

large [7/]

ab
rl(']) ~ -- (4.11)

rl

C

Y2(r]) ~ - (4.12)
r/

12



where

and

b _ B

wd6,0)
6fcc(4o, o) + fc(¢o, o)

1
C_

¢3f_(4o,O) + 40fd40,0)

Equation (4.9) and (4.10) with conditions (4.11) and (4.12) can be solved exactly

(4.13)

(4.14)

Yl(rl) = -_ - - ba (4.15)

C

Y2(q)- 4b2a 2 V/q _- 4ba[tl- V/q 2- 4ba] 2 • (4.16)

The above solutions (4.15), (4.16) show that two square root singularities at q =

+_,i.e. at 4=40T40_for0<t << 1 for each ofg,((,t) andg2(4, t),eachof

which is consistent with the expansion (3.13) and (3.14) for sufficiently small 140 T 40_[.

Going to the definition (4.6) and (4.7), it is clear that for t << 1, each of Al(t), A2(t),

B2(t) are directly determinable from (4.15) and (4.16) at each singularity.

4b. Singularities involving logarithms

Here, we assume condition (b) at some point 40- With this initial condition, clearly

from definition of y_ and g2 in terms of W and f_:, gz = 0 and y2(_, 0) has an initial simple

pole at ( = 40. In this case, it is appropriate to introduce the inner variable

1 ___o]/t (4.17)-

where

Y, (,1,t) = y,(4(_,t),t)

Y_(,1,t) = y2(¢(,7,t), t)

YI I /. I'_N

a = g2tl/¢,o,U) --

1

R_(¢0,0)
40

(4.18)

(4.19)

(4.20)

b= 40/c(40,0)+ o)(02f¢i((0, (4.21)

On substituting (4.18) and (4.19) into (2.18) and (2.26), it is clear that for r/ = O(1) and

t << 1, with O(t) error, we can write

(4.22)



Y2'[r/- ]q] + Y)[1 + Y[] = 0 (4.23)

where the prime denotes derivative with respect to r/. Now to match to the initial condition,

it is clear that asr/ _ oo,
1

Y2(q,t) ",, - (4.24)

1
Yl(q,t) _ (4.25)

71

Since the boundary conditions and the leading order equations do not involve t explicitly,

to the leading order for t < < 1, each of Y1 and }'_ will be purely a function of _]. V_re can

write the solution down implicitly as

r/= X -1/2 - 1 fo x. [e x'/2 - 1]dx' (4.26)
xlal _

Y2 = X1/2e x/2 (4.27)

1 [x [c x'l_ - 1]

}q = X-'/2(1 -cx/2)- -2 ]o dx" --- (4.28)xtal 2

Since 71(X) is an analytic fimction and qx _ 0 in the finite X plane except at the origin,

it follows from formulae (4.27) and (4.28) that the only singularities of 1_ and _ are at

X =0, which corresponds to r/--- oc, and at X- oe, whereas Re X ---* -oo, q takes a

finite value

f-_ [c x12 - 1]1 dx (4.29)
7"]0 -- 2 X 3/2

There are two possible values for 7]0, depending on the choice of the branch of X 1/2. From

numerical integration, we find

r/0 = +1.2533i. (4.30)

These two points are the only singularities of Y_(q) and Yz(q) in the fnite q plane. Note

that if Re X _ cx_, then r/ _ _ and so at q = c_, there are other possible behaviors,

besides (4.24) and (4.25). However, this behavior occurs in the other branch sheet of the

Riemann surface generated by the branch points q0 (given by (4.29)). To deduce the nature

of the singularity of Y1 and Y2 near r/= r/0, we notice that

X _ 2In(q-71o )+31nln(q-710) + .. (4.31)

so that for q --_ rl0 ,

Y_ _ T/0--(7/--r/0) ln(q--q0) + .. (4.32)

10
Y_ _-, _ ]- 7/o)[2 In (q - q0)12.. (4.33)
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These singularities at specific r/0 correspond to moving singularities in the ( plane at

(0 - v'_(0r/0t, as can deduced from (4.17). These singularity locations can be expected to

he accurate only for t << 1, because of the limitation of our analysis.

4c. One-half singularity birth at infinity

We now assume condition (c) holds. We will show that this results in the birth of a

one-half singularity at infinity.

From given conditions for case (c), we get

yl((,0) --_ bi (n (4.34)

y2((,o) ~ b_(-m (4.35)

for some constants bl and b_ with n >_ 1 and m _> 0. In this case, we find that the regular

perturbation expansion in powers of t break down for ( so large that ( t _/" = O(1) or

larger. Hence, it is appropriate to introduce an inner variable

rl = _t'/". (4.36)

Then upon substituting
1

_]l(((l]'_)'t) = 7 Yl(?],t)

v2(((,,t),t) = tml_ y_(,1,t)

(4.37)

(4.38)

into equations (2.I8) and (2.26) with r1 = 0(1) and t

relations (with O(t) error):

_y_ + 'ly, _ ,1},] y[ = 0 (4.39)
Tt

Y;[Y,- -11- Y_ [_7 + r_] = 0 (4.40)
rt nr/

where the prime denotes derivative with respect to r/ keeping t fixed. The initial conditions

(4.34) and (4.35), translate to the following equation for r1 _ 0

<< 1, we obtain the following

Yl(q) "_ bit/'_ (4.41)

Y2(r/) _ b27/-". (4.42)

The solution to (4.39) and (4.40) that matches with the asymptotic conditions (4.41),

(4.42) is given implicitly as

e -r' (4.43)
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Y2 =v,W_/"b2Y-m/"q, t - nY1]. (4.44)

From (4.43), it is clear that 77is a regular function of Y1 everywhere in the finite complex

d,7 has a simple zero at Y1 - 1Y1 plane except at the origin. Further, it is clear that _ - 7,"

Thus, it is clear that the only singularity(ies) of I71 in the finite q domain (other than

q = 0) is located where

= ( 1 ,_l/,, _--1/_'1 (4.45)
t,

Note that this corresponds to n distinct locations corresponding to n distinct branches in

(4.45). The behavior of Y1 and Yx near such an 77o is clearly

y_ ... 1 _ q_2n,l._,bll,,e,l,,(,i_ 7#o),12+ .. (4.46)

From (4.44), it follows that

_"l"b_n'-"l"+' ? 2n'l,,-'bll"ell"(,1- 77o)'I2 + (4.47)

Thus, in the case when m > 0 and n > 1, there is instantaneous generation of n

1/2 singularity(ies) at me that move into the finite _ plane. The behavior of yl and Y2 at

each singularity is clearly seen to be consistent with (3.13) and (3.14). We find that for

t << 1,

= ~

¢_(t) = t-ll"qo

1

Ai(t) = _-7

A2(t) = t_-'?-2n'l.-1"l"ol £. lln,

t-_+_ bll'ib2nml"+lq_2nil,,-iblll_e'l . "

(4.48)

(4.49)

(4.50)

(4.51)

5. NUMERICAL CALCULATIONS AND RESULTS

our numerical calculations have been limited to initial conditions of the special
So far,

fornl

f((, 0) =0 (5.1)

w((, 0) = -<. (5.2)

This corresponds to a sinusoidal perturbation in the vortex sheet strength at an initially

flat interface. It is likely that the numerical procedure described below can be generalized

to other cases; however, our primary motivation in this calculation was to see if indeed the

16



approach of a one-half singularity as (3.13) and (3.14) towards [_[ = 1 corresponds to a

spike at the physical interface and illustrate through a simple examl)le how the unphysical

domain calculation allows us to extract all the relevant information about such a singularity.

We chose this special initial condition for simplicity. Further, we only studied tile details

for e = 0.1, although we checked to see that similar qualitative features appeared for other

e. From the analytical evidence presented in Section 4c, one can expect only one singularity

forming at oo, which according to (4.37) and (4.46) will start moving down the negative

real ( axis towards 4 = -1. This is confirmed by the numerical results presented here.

We use the unphysical equations in tile form (2.29), (2.32) and (2.33). TILe variables

1 and y' atwhich are advanced in time are the the 6 N complex point values of _(_, t), _ _2

N uniformly spaced out points on each of two circles in the _-plane centered at the origin

of fixed radii p0 and pl, where 1 < Pl < P0. These set of 2N points in the _ plane

will henceforth be referred to as collocation points. N, chosen between 64 and 256 in all

the calculations presented, is taken to be a power of 2 to allow convenience of fast Fourier

Transform.

We now describe the step by step procedure to determine the right hand side of (2.29),

and _- are known(2.32) and (2.33) at the collocation points at any time t once _(_, t), _-= ¢_

at these points. This lets us advance these variables in time, using a standard ordinary

differential equations solver.

Step 1:

From the known point values of 4 we use a fast Fourier Transform in Art _ to compute

the derivative _ at the collocation points. We then evaluate gl(_(_,t),t) and y2(_(_,t),t),

using tile relation (2.27) and (2.28) at each collocation point.

Step 2:

Assuming that tile image _(_, t) of ]_l -- P_ is outside the unit _ circle and that each

of Yl and Y2 are analytic functions of _ on and inside this curve (assumptions checked

aposteriori), we obtain

yl(_o,t) = _2rri f_l=p, y_(_(_,t),t)Q(_,t)((_)- _0 (5.3)

2rci t=p,

2r_i I=p, [¢(¢)- ¢0]=

(5.4)

(5.5)

We compute y_(e_",t) and y2(e_",t) for N uniformly spaced out t, in the real interval

(0, 2rr). The integrals in (5.3)-(5.5) were implemented by using a real angular variable _ in
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the representation _ = pl e io and then using a trapezoidal rule that uses the N uniformly

spaced points in _, over the interval (0, 2 zr).

Step 3:

11!,,112Using the computation in Step 2, Rc[yl y_] and _ are computed at N uniformly

spaced out points on l(l = 1 circle which is then used to compute cj and _j (for 0 _<

j_< N/2) in the Fourier representations

R_[yl(_i_ • iv,t)v_(_ ,01 =
oo

(5.6)
j_--oo

lly,(ei_,t)]2= _ _j e 0". (5.7)
2

This is then used to calculate Ra(_(_,t),t) and Ii,((,(_,t),t) at the collocation points by

using the representations

n_(_, t) = -_0_ - 2y_ cj_'-J (5.s)
j=l

1,4(¢,t ) = 2 Ej_j{ -y-' (5.9)

j=l

that follow from (2.11), (2.15) and (2.22).

Step 4:

Using (5.3)-(5.5) and taking (0 - _ for each of the collocation points, we compute¢(_,t)

R2 and n,< by using (2.20) and (2.21).

Once steps 1 through 4 are implemented, we are in a position to evaluate the right

hand side of (2.29), (2.32) and (2.33) at the collocation points. This allows us to advance

I and _/h_ in time by using a standard ordinary differential equations solver.each of (, _ @2

We monitored the computed values of 1_(_, t)l at the collocation points to make sure that

they were outside the unit circle, or otherwise (5.3)-(5.5) will not be valid. Further, when

I¢1 < 1.04, we discontinued calculations since accurate evaluation of the integrals in (5.3)-

(5.5) required a value of N larger than 256, the largest value we allowed in our calculation.

As a biproduct of the above calculation, we get the physical interface location since

the knowledge of y2(_, t) on the unit circle gained in Step 2 allows us to reconstruct (up

to a time dependent constant) the conformal mapping function z((, t) on I_l = 1 since

• fo" 1 (5.10)z(e'",t) = z(1,t) + dUy2(ei_,,t ) .

Note that z(1,t) cannot be found from the unphysical equations since yl and y2 involve

the derivative zc. However, for any symmetric initial condition, z(1, t) is purely imaginary.
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It is well known that the averageheight (in the physical z domain) _ f:'_ ydx is conserved

in time and so

_0 2_r • , 0_0 2_r " . (5.11)

Since z(_,0) is known initially, (5.11) can be used to compute z(1,t) in (5.10), which

allows us to compute z(eiv,t) completely. For purposes of computing the integrals in

(5.10), (5.11), we used a trapezoidal rule using the N uniformly spaced out points on the

unit ¢ circle, where y2 is known.

We also computed the following integrals using a trapezoidal rule and the values of

the functions at the collocation points

1 j_l_ d_ _ 1 f_ d_.(, ,, (5.12)No = 2_----i t=po Q 27ri i=p,

1 fl _ (/_ 1 f_ d__o - 27ri i=po 27ri t=m Q (5.13)

1 fl { d_ _ 1 /i _ d_ _("- 2rri i=p0 2rri i=m _ (5.14)

1 d_ d_ (5.15)
z0 = 2;r---_ i=o0 2rri l=p,

AI-- 1 _ (t_ _)IQ_ 1 j_l_ d_ 7)lQ_ (5.16)27ri i=po _ 27ri l=p_ _

.A2 = 1--}--f_ d_ _'_ __ 1 _i _ d,_ _''_ (_ (5.17)2_ri I=po Q 2_i t=p, _',_

1 _ d_. _,_(,_ 1 j(, d_. _)2(,,, (5.18)/)_ = _ t=po Q 27ri I=., Q "

Here (,%, is obtained at the collocation points through fast Fourier transforming _ as a

function of Arg _ on I_l = p0 and l_l = P_-

It was observed that for t small enough, all the integrals (5.12)-(5.18) were zero up

to munerical accuracy (five digits in the worst case presented here), as must be the case if

there is no singularity of the integrands within the annular region in the { plane between

= po and = pl. Then, after some time, which was found to depend on the choice

of p0, the value of No changed dramatically over a short period of time before settling

down to a value of 1 (up to five digits). The transient time when No was significantly

different from 0 or 1 became progressively shorter as N was increased. We interpreted this

result to mean that around this time, a zero _0(t) of (_ crossed from > p0 into the
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region I_I < p0. The dependence of the results on N is not expected as the numerical

quadrature is not adequate during the short period of time when _0(t) is very close to

I(I = p0- Note however, this inaccuracy has no impact on the actual solutions to (2.29),

(2.32) and (2.33) since it was found that the right-hand sides of (2.29), (2.32) and (2.33)

were well behaved when this happened. This is not unexpected since there is no division by

Q in implementing steps 1 through 4, as necessary to calculate the integrals (5.12)-(5.18).

Figures 3 and 4 show the images of 256 unifornlly spaced out points on t_t = p0 = 5, at

t = 1.4 andt = 1.6, just before and after No changed its value from0 to 1. At t = 1.4,

the zero of Q is at _0 = -5.295 and the corresponding _ (singularity location in the

plane) is at -2.061. The apparent cusp in Fig. 3 is because Q is close to 0 at _ = -5 due

to the proximity of _0- At a slightly later time when _0 is exactly -5, we get a true cusp.

The image of l_l = 5 in the _ plane at t = 1.6 clearly shows that the curve is not simple

and that it intersects itself. We clearly see that the failure of one to one correspondence

of _ and _" on this curve. Relating the geometric nature of the observed image in Fig. 4

to general mapping properties of an analytic function, it is clear that there is a zero of _

in l_[ < p0, as is consistent with the computed value of No = 1 at this time. We also

monitored the image of I_[ = pl and it was found that throughout our calculations, its

image consisted of a simple curve completely outside [([ = 1. Figure 5 shows the image of

256 points on l([ = pl = 1.5 under (((, t) at t = 2.4. Another property that was apparent

in our calculations is that the image under ((_, t) had the effect of moving points both

radially outwards and tangentially away from _"= 1, which corresponds to the bubble part

of the interface, while points tended to move both radially inwards and slide tangentially

towards ( = -1, which corresponds to the upward moving spike (recall gravity is upwards)

in the physical domain. This tendency is clear in Figures 3-5. There are a lot more points

near the negative real ( axis than the positive ( axis, even when all the points were initially

uniformly spaced out on a circle centered about the origin. Furthermore, the points near

= -1 have moved closer while image points near ( = 1 are further away than they were

initially (Recalling _(_, 0) = {). Since the image _(_, t) defines the motion of characteristic,

it is clear that information from the unphysical plane tends to flow towards a spike that

will make the spike features sensitive to small changes in specified initial conditions in the

physical domain l_l -< 1. Near the bubble however, the opposite will be true. Further

implications of this property will be discussed in Section 7.

From the calculus of residues, it follows that for _(_, t), analytic in _, when a zero

of Q is in the annular region the computed _0 in (5.13) is indeed the location _0(t) of

the zero of ¢_. Further, the value in (5.14) will be the corresponding image (,(t) in the

plane. The value z0 in (5.15) is clearly _{_(_0). Further, the computed A1, A2 and /)2

2O
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in (5.16)-(5.18) has to correspond to to !)1(40,t), /)1_(40,t) and _)2(_0,t). Whenever the

calculated No = 1, the relations (3.15)-(3.17) are used to compute A1, A2 and B2 in the

expansion (3.13)-(3.14). The calculation had to be discontinued when any of the following

conditions occurred

(i) The image of any of the collocation points on ((4, t) for ]4[ = pl was in ](] < 1.04 since

this made it difficult to get a sufficiently accurate result in the quadratures (5.3)-(5.5) for

N not exceeding 256.

(ii) The image of any collocation points on [4[ = p0 under the computed ((_, t) came inside

the unit ( circle as this made the evahmtion in (5.8) and (5.9) sensitive to the small errors

in cj and cj.

(iii) Whenever [_0] computed in (5.12) was smaller that pl, as otherwise we could not

ensure that the singularity (_(t) was outside the image of [_l = pl in the ( plane, as

necessary for (5.3)-(5.5) to be valid.

Since we were interested in tracking the singularity, the choice of p0 and pl in our

calculations was dictated by the necessity that the calculations could be carried out over

a significant interval of time for which -No was nonzero and none of the conditions (i)-(iii)

resulted. For all the calculations reported in the table below, we used Pl = 1.5, though we

changed pl between 1.25 and 2 to ascertain that the calculations of the physical interface

did not depend on the choice of pl as would be the case if the image of ]_[ = pl in the

plane did not contain any singularity of yl((,t) and y2((,t). The interfacial location

also agreed with a standard physical domain code based on satisfying (2.8) and (2.12)

at uniformly spaced out points on the unit ( circle, with f and W having a truncated

representation of (2.2) and (2.3). This helped us fltrther confirm that there was indeed no

singularity of Yl and y2 for [_[ < [_l. We also ensured that the values of the integrals in

(5.12)-(5.18) at any time t were independent of pl when No had settled to the value 1. The

value of P0 was varied from a maximum of 50 to a minimum of 3.0 in order to track the

singularity at various stages of its motion. For a large value of p0, the value of No settled

to a value of 1 at a relatively small t. However, in such cases the computation could not

be carried out for a long time because of the limitation of condition (ii) cited above. In

that case, one or more points on the secondary lobe (as in Fig. 4) of the image of l{I = p0

tended to move in into I(I < 1 before long. For smaller values of P0 in the range we

tried, computation could be carried out for a significantly longer time; however for such

cases, singularity tracking was not possible for earlier times since 40(t) was then outside

14] = p0. However, smaller P0 allowed us to track (', in the later stages when (, was getting

fairly close to -1 when the corresponding interface shape near ( = -1 showed a developing

spike. We also noted that for two different p0, in the overlapping time interval when the
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computed No had settled to a value of 1, there was agreement in the computations (5.12)-

(5.18). This provided an additional check on the code and on our assumption that there

was indeed only one singularity in this case.

Table 1 lists the various quantities of interest as a function of time. The results have

been checked by appropriately doubling N until there was no variation in the results•

With the limited number of N < 256, we had difficulty ensuring desirable accuracy for

t greater than 2.4. The physical interface at t = 2.4 is shown in Fig. 6. The image

of _ = -1 corresponds to the spike observed at x = 7r. The curve marked 1 in figures

7, 8, 9, 10 show _',, A1, A2 and B2 as a function of t, where we used (3.15)-(3.17) and

the computed quantities in (5.12)-(5.18). The curve marked 2 is the analytic prediction

(4.48)-(4.51), where bl = -e = -0.1, b2 = 1, n = 1 and m = 0. Since the theory in

Section 4 requires t << 1, we get surprisingly good agreement even for t not all that

small. Figure 11 shows Im z(1,t) and Irn z(-1, t), the vertical location of the bubble tip

and spike respectively. Though, the spike does not appear very well developed in Fig. 6,

Fig. 11 shows that that the long time asymptotic range has been reached where the spike

accelerates upwards (the direction of gravity) with the acceleration approaching free fall.

Fig. 12 shows the product Re[A2 B_] as a function of time. In this case, since each of Aa

and B2 are real, Re [A2B_] = A2B2. This quantity appears to reach a minimum and then

increase. Thus Ml(t), as defined in (6.32), goes through a maximum and then decreases.

V_re take this as an indication that M1 (t) does not blow up in finite time• We cannot rule

out the possibility that the observed trend in M1 (t) reverses at at an even longer time; but

given that the spike has reached its asymptotic acceleration towards the the end of our

calculations, we do not expect this to happen. In the following section, analytical evidence

will be presented to show that under the assumption that ftto M_ (t)dt does not blow up in

finite time, an isolated one-half singularity of the type (3.13) and (3.14) cannot reach the

physical domain [_[ = 1 in finite time.

6. EVENTUAL FATE OF A ONE-HALF SINGULARITY

We now want to understand the fate of an isolated singularity of the type given by

(3.13) and (3.14), once it is already close to the unit circle in the _" plane.

Note that (2.21), (2.22) and (3.18) imply that

I_(_.,(t),t) - y2(_-_,t) yl(_,(t),t). (6.1)¢,

Now, from (2.25), (3.13) and (3.14), it follows that

1 _2. c,_ + 4,]O(_,t) (6.2)
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where

Q(u,t) Re [ * i. i.= y,(e , t),t) _2(e ,t) ]. (6.3)

It is convenient to define

Q,(u,t) = Re [A;(t) B2(t) (e i_- _(t)) '/2 ] (6.4)

Q2(u,t) : Re [A_'(t) Ba(t)(e i"- (,(t)) ]

Qa(u,t) = Re [A_(t) B2(t)] I_ i" - _s(t)].

(0.5)

(6.6)

If we denote

(s = R e iu° , (6.7)

then for R _ 1- , the behavior of Q(u,t) in the vicinity of Uo is given by

Q(u,t) = Q,(u,t) + Q2(u,t) + Q3(u,t) + o(1_-1,o1_/2). (6.s)

Now let's define

lf02 h,(¢,,,t) = 2--; _"

1 fo 2_h2(G,t)- 2_ d,,

1 Jo 2'_/23((s, t) - 2_r du

[e i" + ¢,
_-u--_s ] Q,(u,t)

e iv + _s
-J"-G ] Q2(u,t)

ei_ + G ]
J Q3(u,t).

e i-" - G

By changing the integration variable from u to

it is not difficult to establish the property that for 1

(6.9)

(6.10)

(6.11)

-u in each of (6.9), (6.10) and (6.11),

_<j_<3,

I 1]fo 2'_ el" + _ Oj(-u,t) (6.12)1 a_[j. ,

Now note that from previous expressions (6.4), (6.5) and (6.6)

¢, (t)) ] (6.13)Q,(-u,t) = Re [Al(t) B_(t) (eiV- * ,/2

Q2(-u,t) = Re [Al(t) B'_(t) (ew- ¢*(t)) ] (6.14)

Qa(-u,t) = Re [A2(t) Bi(t)] lei" - _:(t)l. (6.15)

Each of (6.13) and (6.14) are clearly seen to be the real part of simple analytic flmctions

for _ = e iu . Therefore, it immediately follows that

1 1/2

[2,(#s(t),t) = -Al(t) 13_(t) ( #,(t) #;(t)) (6.16)

23



1
I22((_(t),t) = -A,(t) B_(t) ( (*(t)). (6.17)

6(0

Now consider I2a((,(t),t) • From (6.6) and (6.11), it. follows that

1 Re [A_(t) B2(t)] du te i_" - _*(t)[ -- -- (6.18)

Using (6.7) and periodicity and symmetry of the integrand, it follows that

L_

/2a((,(t),t) = (R 2 - 1) Re [A_(t) B2(t)] du (6.19)
7r (R 2 + 1 - 2 R co.su) '/2"

Now we want to consider the asymptotics of (6.19) in the limit R + 1- . To do this it

is convenient to break the integral range in (6.19)

/o": I/o'+ ¢00,.,
where 1 >> e >> (R- 1). For the first integral in (6.20), the leading order asymptotics

can be found by replacing R by 1. For the second integral in (6.20), the leading order
1

asymptotics can be found by first simplifying the cos u by 1 - 7 u2 and then replacing

the integration variable u by P , where p = (R- 1) P . One then finds the leading

order asymptotics of (6.19) as

i23((,(t),t) ,,_ _2 R-1Rc(A_B2) [j__ du 1

7r 2 sin _ u

Each of these integrals can be computed exactly with

addition. We find

_I(R-1) d_, ]+ (1 + z)2) 1/2 "

(6.21)

e dropping out completely on

ha((,(t),t) = -2 (R- 1) Re (A;(t) B2(t)) [3 In 2 - In (n- 1) + o(1) ]. (6.22)
71"

Now let compute

r_R(¢.(t),t)

It is clear that

where

-- h(6(t),t)- h,(¢,(t),t)

if..IR(C*(t)'t)- 2_ du

QR(u,t) = Q(u,t)- Qi(u,t)

24

- h2((,(t),t)- ha(_,(t),t). (6.23)

ei'e"+-(,¢" ] Qn(u,t)

- - O.3(.,t).

(6.24)

(6.25)



This can also be written as

1 fo2'_ [ -R2+l-2iRsin(u-u°)] Qn(u,t).IR(_(t),t) = 2----_ du 1 + R 2 -- _----v_

As R _ 1- , the above expression reduces to

(6.26)

R- 1 [2_ QRo (u,t)
IR(_s(t),t) = -- J0 d. [1 + o(1)]_- 2 - 2-_o._-_ -- uo)

i _02_ 1du cot (u-Uo) QRo (u,t) [1 + o(1)] (6.27)2_

where the subscript 0 in QR refers to its evaluation with 48 = ei'° • Notice that fl'om

the behavior (6.8), each of the integrals in (6.27) exists.

Now note the fact that if for any complex _ singularity, near which the asymptotic

behavior of Yl and y2

neighborhood of which

is given by (3.13) and (3.14), there is a singularity at 4; in the

A_(t) (_ - _*(t)) '/2 + A_(t)(( - (*) + 0(4 - (_;)3/2.. (6.28)g,(_,t) = A;(t) +

and

y2(4,t) = B_(t) ((-(*(t)) '/2 + B*3(t)(4-(*) + o(((-(*)3/2) .. (6.29)

1
Now as R _ 1- ,thepoint _ comes close to 4 = 4" and so the last term in (6.1)

yields

1 1 _/2

Al(t) B_ (¢s(t) ¢*(t))

1

+ A,(t) B_ (¢_(t) ¢*(t)) + o(R- 1)

(6.30)

Taking the real part of (6.1), using (6.7), (6.16), (6.17), (6.22), (6.27) and (6.29) in the

asymptotic limit R _ 1- , we get

= M,(t) (R- 1) In(R- 1) + M2(t) (R- 1) + o(R- 1) (6.31)

where

Ml(t) = 2 Re [A;(t) B2(t) ] (6.32)
7(

M2(t) -- 6 In2 Re [A_(t) B2(t)] I f[2'_
Qno(V,t)

du . (6.33)
7_ _ .Io 2-2cos (u- uo)
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The solution of (6.31) to the leading order is

(R- 1) = (no - 1)  f,'o "'' "(") (6.33)

If we assume that ftto _ll(t)dt does not blow up for any finite time, then it follows from

(6.34), that there will be absence of finite time singularity. This assmnption is consistent

with the results from numerical calculations as reported in the previous section, though

for a special initial condition. In that case, recall that _I1 (t) actually appeared to decrease

after sufficiently long time.

7. DISCUSSIONS AND CONCLUSION

We have analyzed some properties of the unphysical equation derived earlier by Tan-

veer (1991a). For early times, for a specific class of analytic W(_,0) and z(_,0) in I_[ > 1

(except possibly at infinity), we noted how one or more singularities can form at a point in

I¢1 > 1, where z¢(ff, 0) is zero. One-half singularities are shown to be generated, though

we show that other singularities of a much more complicated form involving logarithms

are possible. Further, analytical evidence suggests that one or more one-half singularity

may be born at C = cx), which moves to the finite _" plane instantaneously. The numerical

computation, although for a special case, clearly shows that one-half singularities on their

approach towards the physical domain corresponds to a continually developing spike. The

connection of more complicated singularities with interracial features is yet to be made.

The numerical computation also suggests that the characteristic field in the unphysical

plane is pointed away from the bubble and towards the spike. With an assumption that

appears to be consistent with the numerical calculation for the special case, our analytical

evidence suggests that an isolated one-half singularity of the type given in (3.13) and (3.14)

cannot reach the l)hysical domain in finite time. We have not investigated the question of

finite time singularity in the physical domain when possibly multiple one-half singularities

merge or other forms of singularities are present, and this remains an open question.

It is clear that the location of formation of initial singularities depend on the specifics

of the initial conditions z(_',0) and W(_,0) in ItS[ > 1. Clearly, it is possible to make

arbitrary small perturt)ation in the physical domain I_l _< 1 that significantly alters the

location and number of singularities that are formed in I¢1 > 1. Further, our numerical

computation, though for a special case, appears to indicate that the characteristic field in

the unphysical plane is directed away from the bubble and towards the spike. This feature

accounts for the sensitivity of spike to initial conditions in the physical plane. Further, if

"9one were to perturb the initial condition (5.1) and (a.-) by placing an additional singularity

in (_1 > 1 that is weak in the sense that its contribution to the right hand side of (2.29)
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is small, then the characteristic field generated in this problem will be close to what has

been computed in Section 5. Since a singularity moves along with the characteristic field,

one can expect that in due time, this additional singularity will also approach ( = -1,

which corresponds to the spike.

This suggests that in a general way, it might be true that weaker singularities have

the tendency to merge with stronger ones. If this is generally true, we speculate this as a

possible reason why bubble competition results in a dominant bubble. The image under

z(_, t) of an arc on I(t = 1 between two approaching singularities must contain the bubble

region, since each spike possibly corresponds to a singularity. If the singularities merge

pairwise in the ( plane, the corresponding bubble region between these two singularities

will disappear resulting in one larger bubble. However, if multiple singularities of nearly

equal strength results from an initial condition, this merger can be expected to take a

while as the characteristic field will be almost equally affected by all the singularities. The

transient dynamics observed in experiment can be expected to depend on the location of

initial singularities and their motion, the randonmess resulting fl'om the ill-posedness in

determining 4¢,0) and W(¢,0) in > 1, whe, they are only given in the physical
domain I_'l -< 1. Confirmation of this scenario must await further investigations in the

fllture.
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t _o ¢_ A1 A2 B2 Spike Bubble

0.24 -41.27 -15.20 4.249 -1.541 0.3626 0.024527 -0.023940

0.40 -24.38 -8.994 2.639 -1.244 0.4721 0.041930 -0.040243

0.60 -15.72 -5.820 1.868 -1.095 0.5843 0.065733 -0.061680

0.80 -11.28 -4.201 1.516 -1.046 0.6857 0.092863 -0.084978

1.00 -8.533 -3.209 1.327 -1.048 0.7808 0.12467 -0.11087

1.20 -6.657 -2.539 1.221 -1.083 0.8712 0.16283 -0.14008

1.40 -5.295 -2.061 1.161 -1.142 0.9555 0.20949 -0.17333

1.60 -4.268 -1.711 1.132 -1.220 1.029 0.26745 -0.21131

1.80 -3.477 -1.454 1.126 -1.315 1.085 0.34039 -0.25464

2.00 -2.860 -1.269 1.141 -1.426 1.108 0.43316 -0.30381

2.20 -2.381 -1.141 1.181 -1.559 1.080 0.55200 -0.35913

2.40 -2.013 -1.062 1.248 -1.729 0.9805 0.70441 -0.42066

Table 1: Various parameters characterizing tile one-half singularity. The last two

columns contain Im z(-1,t) and Im z(1,t), the vertical locations of the spike and

the bubble.
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Fig. 6: The shape of the interface at t = 2.4 when normalized by the wavelength 2ft.
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A spike can be noted at _ = 0.5 corresponding to _ = -1.
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Fig. 7: The trajectory of the singularity ¢_(t) as a function of t is shown by the ÷

_ curve marked 1. Curve 2 correspond to the analytical prediction (4.45) using a small ---

t analysis.
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Fig. 8:A1 is shown here as a function of t in the curve 1. Curve 2 corresponds to the

analytical prediction using small t analysis.
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Fig. 9:A2 is shown here as a function of t in the curve 1. Curve 2 corresponds to the

analytical prediction using small t analysis.
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Fig. 10:B2 is shown here as a function of t in the curve 1. Curve 2 corresponds to

the analytical prediction using small t analysis.
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